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Details are presented of the PIES code, which uses a nonvariational algorithm for calcu- 
lating fully three-dimensional MHD equilibria. The convergence properties of the code are 
studied for several axisymmetric and nonaxisymmetric finite fi equilibria that have magnetic 
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I. INTRODUCTION 

Computer codes for calculating toroidal magnetohydrodynamic (MHD) equi- 
libria play an important role in the design of plasma fusion machines and in the 
interpretation of experimental data. Desirable goals for such codes are the ability 
to simulate 3-dimensional (3D) equilibria efficiently (since the parameter space for 
optimizing fusion machines is high-dimensional) and to treat magnetic fields with 
stochastic field lines and magnetic islands. The latter goal is especially important 
since symmetries that guarantee the existence of magnetic surfaces everywhere may 
be lacking (stellarators) or may be spontaneously broken (tearing modes in 
tokamaks). 

Impressive progress has been made in developing accurate and efficient 3-dimen- 
sional equilibrium solvers [l-7] but progress towards the second goal has been 
much less satisfactory. The main difficulty lies in developing numerical methods 
that allow magnetic fields to change topology. Existing 3-dimensional equilibrium 
codes either assume the existence of magnetic surfaces [l-5] or impose flux conser- 
vation while evolving the magnetic field towards a minimum on an Eulerian grid 
[6, 71. These restrictions do not allow changes in the topology of the initial 
magnetic field and have prevented useful simulations of equilibria with islands to 
date. 

These difficulties suggest that it would be fruitful to explore new approaches that 
might lead to efficient codes that can also treat magnetic islands and stochastic field 
lines. New approaches would also be interesting in their own right. 

In a recent paper by two of the authors [8], preliminary details were given of a 
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new 3D MHD equilibrium code (called PIES, for the Princeton Iterative Equi- 
librium Solver) that offered certain potential advantages in resolving these dif- 
ficulties. Unlike existing variational codes, the PIES code implemented a nonvaria- 
tional algorithm similar to the one first proposed by Spitzer [9] and by Grad and 
Rubin [lo] in the 1950’s. MHD equilibria are then determined as fixed points of 
a nonlinear iteration scheme rather than as minima of the MHD functional. As 
pointed out in several recent papers [ 11, 12, 81, this offers the possibility of treating 
islands and stochastic field lines in an elegant manner without sacrificing efficiency. 
An additional benefit is a natural way of treating zero net toroidal current, which 
is necessary for stellarators. 

In the present paper, we give a more complete description of the PIES code, and 
a careful study of its convergence properties. Obvious important questions are 
whether nonvariational codes converge at all and how convergence depends on 
numerical and physical parameters. Since nonvariational algorithms have not been 
studied previously in 3D equilibrium codes, we answer this question first for the 
case in which magnetic surfaces exist everywhere. This gives a foundation for future 
studies with applications to equilibria with magnetic islands and to tearing modes 
in tokamaks [13]. 

A key result given below is that the PIES code does converge for representative 
tokamak and stellarator equilibria with magnetic surfaces and that the convergence 
is both rapid (few iterations needed) and efficient (moderate CPU time needed 
per iteration). Nonvariational algorithms may therefore play an important 
complementary role to existing variational codes and should be studied further. 

Another conclusion, not anticipated by prior analytical work, is that Spitzer’s 
nonvariational algorithm is delicate numerically. The numerical methods require a 
careful choice of discretization for solving Ampere’s law to avoid numerical 
instability [ 141. Even after careful optimization of the discretization, convergence 
sometimes requires blending of information from earlier iterations and possible 
filtering of radial Fourier modes to eliminate a slowly growing numerical instability 
(see Section 1V.E below). Such numerical instabilities often arise in strongly 
nonlinear codes. Similar difficulties have been reported in some variational MHD 
codes [ 151 as well as in meteorological codes [16]. 

The rest of the paper is arranged as follows: In Section II, we give an overview 
of the PIES code. The following sections expand Section II, giving further details 
about the physics and about the numerical methods. In Section III, we explain 
the coordinate systems that are used. In Section IV, we discuss the numerical 
implementation of the nonvariational method. In Section V, we examine axisym- 
metric and 3-dimensional MHD equilibria and analyze the convergence properties 
of the algorithm with respect to various parameters. In Section VI, we give a sum- 
mary and conclusions. Appendix A discusses how the Fourier coefficients of the 
magnetic field from the previous iteration can be expressed in the present magnetic 
coordinates. 

Other researchers are working on nonvariational methods for MHD equilibrium 
problems [17-193, but have not yet published convergence studies of their 
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algorithms. Algorithms similar to Spitzer’s have also been studied independently 
by fluid dynamicists in non-toroidal geometries, solving the Euler equations for 
inviscid flow in turning channels [20]. However, many of the subtleties of the 
MHD equations in toroidal domains-large shifts of the magnetic axis, resonances 
on rational surfaces, and island formation-do not occur in this context. 

II. OVERVIEW 

In this section, we give an overview of the PIES code. Readers primarily 
interested in the convergence properties of the code should be able to go directly 
to Section V after reading this section. 

Our goal is to calculate solutions of the 3-dimensional MHD equilibrium 
equations: 

JxB=Vp, (1) 

VxB=J, (2) 

V.B=O, (3) 

in a general toroidal domain. Here J is the current density, B is the magnetic field, 
and Vp is the pressure gradient. 

Numerical methods for solving Eqs. (1 k(3) in three dimensions have been tradi- 
tionally derived variationally using the MHD functional [21,2]. An alternative 
approach-that solutions be computed by direct iteration of the equilibrium 
equations-was originally suggested by Spitzer [9] and by Grad and Rubin [lo] 
although algorithmic details were not given. Interest in this approach was revived 
by recent calculations of Boozer [11] and of Reiman and Boozer [12]. These 
authors showed that Spitzer’s algorithm had several potential advantages when 
implemented using magnetic coordinates. In particular, magnetic islands and 
stochastic fields lines could be treated effectively [ 123. 

The algorithm is simple to state, although subtle to implement [8]. The equi- 
librium equations, Eqs. (l)-(3), are iterated one after another to find a magnetic 
field B and a current density J that are consistent with given pressure and current 
profiles and with a given outermost magnetic surface. Various quantities are 
evaluated along magnetic field lines of B and then transformed to “near-magnetic” 
coordinates, which coincide with magnetic coordinates where surfaces exist and 
which interpolate through regions of islands and stochastic field lines. This allows 
the code to treat island physics accurately. 

The numerical method involves two fundamental steps. The first step is to solve 
for the current density J in Eq. (1 ), given an initial guess for B. This is done by 
writing the force balance equation as a magnetic differential equation for a stream 
function v from which J can be determined (see Eq. (34) below and Ref. [ 11 I): 
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The variable p defines a radial coordinate such that p = 0 is a magnetic axis of B 
while p = 1 gives the outermost flux surface. The prime ’ = d/dp denotes differentia- 
tion with respect to p. The functions p(p), g(p), Z(p) determine the pressure, the net 
poloidal current, and the net toroidal current profiles, respectively. The function 
t(p) is the rotational transform (winding number) of a magnetic field line defining 
the magnetic surface labeled by p, while /” is the Jacobian between laboratory and 
near-magnetic coordinates (see Eq. (31) below). This equation is derived in 
Section 1V.B below. 

Equation (4) yields both the diamagnetic current density (JI = B x VP/B’) and 
the Pfirsch-Schliiter currents (J ,, = J - JI) upon solution. It can be solved numeri- 
cally by integrating along field lines of B, by transforming to magnetic coordinates 
on existing surfaces, and by treating v as constant for stochastic field lines or for 
lines in magnetic islands [22]. 

The second step is to solve for the new magnetic field B that is generated by the 
current density J through Ampere’s law, Eq. (2). It is straightforward [ 1 l] to find 
a field h such that V x h = J, but h does not generally satisfy Eq. (3). This suggests 
trying to find a scalar field u such that 

h=h+Vu+LV4 

is divergence free. The new magnetic field b will then also satisfy Ampere’s law since 
the curl of a gradient is zero. Equation (3) yields a Poisson equations for U: 

V2u= -V.(h+IV#), (5) 

The constant 1 is known in terms of initial conditions, as explained in Section 1V.D. 
Solving for u gives a new magnetic field b which should be a closer approximation 
to a solution to the equilibrium equations. 

The nonvariational algorithm then consists of repeating these steps many times- 
-calculating new fields J and B through the associated scalar fields v and *until 
an acceptable level of convergence is attained. The crucial physical advantage of 
this approach is the formulation in terms of the magnetic differential equation, 
Eq. (4). This can be accurately solved even for solutions B with complex field line 
topology [22]. 

The numerically subtle part of the nonvariational algorithm lies in solving for U. 
Overall convergence of the PIES algorithm depends on subtle details of how the 
Poisson equation is discretized, e.g., whether a conservative discretization is chosen 
or whether Fourier coefficients are defined on half-integer radial meshes as opposed 
to integer radial meshes. This numerical sensitivity arises partly because the coor- 
dinate system is tied closely to the magnetic field B and changes with each iteration; 
partly because the coordinate system is centered on a magnetic axis that also varies 
from iteration to iteration; and also because some quantities (metric elements, 
vector components) are singular near the magnetic axis. Further discussion is given 
in Ref. [14]. 

For this paper, we will assume that satisfactory numerical methods have been 
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Initial data: Bcj~~,e~,cpJ, I(p), p(p), p=l flux surface / (a) 

f(x,y,z) + f(pAoq3, f =B’4 x, y, . (cl 

I (d) 
V2u(p,f3,(p) = - V. (h + hVcd) 

B(p,Blp) = h + Vu + hVtf~ 
(e) 

IIJxB- VPII < EI and II AB II < ~2 (f) 

FIG. 1. A schematic flowchart of the central steps in the PIES code: (a) An initial magnetic field is 
specitied in laboratory coordinates (p,, O,, 4); two surface functions are also given. The outermost flux 
surface (p = 1) is determined by choosing a field line along a symmetry axis through the magnetic axis. 
(b) Various quantities are evaluated along the field lines of B by integrating the field line equations, 
Eq. (29). The initial points of the field lines lie at uniformly separated values of p along a symmetry axis. 
(c) Various fields such as Bd, X, and y are then transformed from laboratory to near-magnetic coor- 
dinates (pk, Ok, 4) using the algorithm of Ref. [22], where k is the iteration number. (d) The magnetic 
differential equation for v is solved and then the current density J is determined. (e) A field h is 
calculated such that V x h = J. A Poisson equation is then solved for u such that II + Vu is divergence- 
free, giving a new magnetic field. (f) The residuals of the 3D MHD equations and the correction to the 
magnetic field are both tested for convergence (E, and s2 are small numbers representing desired con- 
vergence accuracies). If neither is suffkiently small, the algorithm is iterated again, using the new B field 
for field-line integrations and transformation to near-magnetic coordinates. 
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derived for solving magnetic differential equations [22] and for solving Poisson 
equations in toroidal domains [ 143 so that we can focus on the overall convergence 
properties of the PIES code, i.e., how these two basic steps interact with each other 
numerically. We note that these two steps are linear problems and that the non- 
linearities of the equilibrium equations arise from integrating along magnetic field 
lines [22] of B and transforming to near-magnetic coordinates. The basic steps of 
the PIES code are summarized in Fig. 1. 

III. COORDINATES SYSTEMS 

In this section, we discuss the coordinate systems used in the PIES code: how 
fields are represented numerically and how the metric elements are calculated. In 
principle, the code can use three different coordinate systems: a laboratory system 
(x, y, z) to prescribe initial conditions; “near-magnetic” coordinates (p, f3,4) to 
simplify solution of the magnetic differential equation Eq. (4); and “optimized” 
coordinates [23] to reduce the effort in solving the Poisson equation (5). In 
practice, integration along field lines of B dominates the computational effort, so 
only the first two coordinate systems are needed. 

Near-magnetic coordinates generalize magnetic coordinates, with constant radial 
surfaces coinciding with magnetic surfaces where they exist and interpolating 
through magnetic islands and stochastic regions elsewhere. Upon transforming to 
near-magnetic coordinates, all fields can be written as a Fourier series in two 
angular variables, a poloidal angle 0, and a toroidal angle 4. The Fourier coef- 
ficients are known on a discrete uniform radial mesh labeled by p, where p = 0 is 
a magnetic axis of B and is also the origin of definition for 0, and where p = 1 is 
a given outermost flux surface. A Fourier representation for the angles is known to 
be more efficient and accurate than the use of finite differences [3]. 

1II.A. Coordinates 

The coordinates (p, tJ,d) are determined by the field lines of B at each iteration 
of the PIES code [22]. Both p and 8 change with B, while the toroidal angle 4 
remains the same. Fixing 4 to be the usual cylindrical 4 removes a gauge ambiguity 
in 8 that exists in magnetic coordinates. It is also a convenient choice for plotting 
magnetic surfaces in laboratory coordinates. 

The toroidal domain in which the MHD equations will be solved is defined in 
these coordinates by 

An algorithm for following field lines of a magnetic field B and determining (p, 8,#) 



108 GREENSIDE, REIMAN, AND SALAS 

such that p = 0 is a magnetic axis and p = 1 is the given outermost flux surface is 
given in Ref. [22]. 

This domain can also be considered to define one period of a device that is not 
axisymmetric. In that case, we can replace q5 by Nq4 and a, by Nd, to treat the case 
of a device with N periods. For simplicity of notation, we shall assume a single 
period machine, with N = 1. 

Also for simplicity, we assume that the domain is symmetric under the so-called 
stellarator symmetry: 

e-+ -8; 4- -4. (7) 

Most stellarator vacuum fields have this symmetry, and the generalization to 
devices lacking this symmetry is straightforward. With this assumption, scalar fields 
will have Fourier series that have even or odd parity under this transformation, of 
the form 

fh e4) = 5 5 f,,h) wd - me), (8) 
m=O n= -&” 

for even parity, and of the form 

(9) 

for odd parity. Here .& and Jf are nonnegative integers that determine the modal 
resolution in the poloidal and toroidal directions, respectively, and are given as 
input to the code (see Table I). 

TABLE I 

Numerical Parameters Needed for the PIES Code 

Parameter Definition 

“u Maximum poloidal mode number 
N Maximum toroidal mode number 
L L + 1 is number of magnetic surfaces 
A Maximum radial power pulled out of Fourier coefftcient 
CYl True for infinite aspect ratio, false otherwise 

ftprec Accuracy of Fourier coeffs from field line following 
coavg Convergence precision for MHD equations 
IlldOff Effective machine precision (Ix] < mdoff =- x = 0) 
bblnd Blending parameter for &‘(p, 6,+) 

xyblnd Blending parameter for x(p, 0, #), and v(p, 0, () 
iblnd Blending parameter for t(p) 

Sl Diffusion smoothing element in Eq. (56) 
92 Antidiffusion smoothing element in Eq. (56) 

Note. These are the most important of the many parameters set in the code. See Refs. [22, 141 for 
more details and a discussion of other parameters. 
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The Fourier coefficients f,,,(p) are assumed to be known on either of two 
uniform radial meshes, an integer mesh commensurate with p = 0 and with p = 1, 

pi = I&, I = 0, . ..) L; (10) 

or a half-integer mesh that is shifted half a radial mesh spacing with respect to the 
integer mesh, 

PI+ 1/2 = (I + l/2) dp, I= 0, . ..) L - 1. (11) 

The radial mesh spacing is dp = l/L, where L is some positive integer determining 
the radial resolution. We will use a superscript I to denote the value of a Fourier 
coefficient at the Ith mesh point: afn,n = a,,,(ldp), with a similar notation for the 
half-integer mesh. 

Each scalar field therefore has (L + 1 )(A! + 1)(2~V + 1) degrees of freedom and 
is stored as a Fortran 77 real array of the form f(O:M, -N:N, 0:L). In the 
absence of the stellarator symmetry, m would vary from --.A! to A and cosine and 
sine modes would both be present; four times as many degrees of freedom would 
be required. We note that the representations, Eqs. (8) and (9), have redundant 
coefficients since the terms 

h,“(P) = +.ho, -n(P)9 (12) 

are identical for n > 0. This redundancy is intentional and serves two useful 
purposes. First, it allows the parity of each array to be tested, which is useful for 
verifying the correctness of a long calculation that produced that array. Second, it 
allows vectorization of Fortran do loops using the natural bounds, do m = 0, M; do 
n= -N, N; and do l=O, L. 

The near-magnetic coordinates are related at each iteration to a laboratory coor- 
dinate system. Instead of using Cartesian coordinates (X, Y, Z), it is more useful 
computationally to use a rotating laboratory coordinate system (x, y, z), which 
is shown in Fig. 2. These coordinates require fewer Fourier coefficients when 

FIG. 2. Schematic relation between the Cartesian coordinates (A’, Y, Z), the laboratory coordinates 
(x, y, z), and the magnetic coordinates (p, 0,d). (x, y, z) forms a right-handed orthogonal coordinate 
system, while (p, 0,q5) is right-handed but generally not orthogonal or separable. R is the major radius. 



110 GREENSIDE, REIMAN, AND SALAS 

expressed in magnetic coordinates [6]. For finite aspect ratio domains, z = R#, 
where R is the major radius and 4 is the toroidal angle of a cylindrical coordinate 
system. For finite aspect ratio domains, z becomes the usual constant Cartesian 
coordinate Z. An arbitrary vector can then be written in the form 

X(p,e,~)=(R+x(p,O,~)1)+~(p,e,~)Q, (13) 

where the unit vectors are given in Cartesian coordinates by 

P = cos($) R- sin(d) f, (14) 

9 = 2, (15) 

L = a,s = S x 9 = -sin(d) 8- cos(d) p. (16) 

These definitions are appropriate for a finite aspect ratio torus. For infinite aspect 
ratio cylinders, the coordinates are Cartesian, 

X(P, &#I = X(P, ‘A 412 + Y(P, &4) 9 + R42 (17) 
f= p; f&; f=gxjkf, (18) 

where R is now the effective major radius of the cylinder (2nR is the length of the 
magnetic axis). An input parameter cyl is needed to tell the code whether the 
domain has finite (cyl= NO) or infinite aspect ratio (cyl = YES). 

At the beginning of each iteration of the PIES code, the coordinates x and y are 
expressed in Fourier series of the forms given by Eqs. (8) and (9), respectively. This 
is achieved [22] by evaluating x and y along fields lines of the magnetic field B. 

Once these Fourier series are known, we can calculate the metric elements of the 
near-magnetic coordinate system defined implicitly by B. This requires evaluating 
numerical derivatives of the coordinate vector x(p, 8,#) and convoluting derivatives 
in pairs to avoid aliasing. The numerical derivatives require special care to obtain 
accuracy and numerical stability near the magnetic axis, as discussed in the next 
section. 

II1.B. Derivatives of Fourier Coefficients 

Numerical approximations to derivatives first arise in evaluating the Fourier 
coefficients of the covariant coordinate vectors 

ep =X,, = x,,S + y,,9 (19) 

e, =X,, = x,,P + y,e9 (20) 

e, = X,, = 
1 

x,$ + y,b3 + (R + x)Z finite aspect ratio 
x,,f + y,#f + RS infinite aspect ratio, (21) 

which are needed in constructing the covariant metric elements g, = ei -ej. Here, a 
comma notation is being used to indicate partial derivatives with respect to a 
variable, e.g., X7, = ax/+, with similar expressions for 8 and 4 derivatives. 



3D MHD EQUILIBRIUM CODE 111 

The angular derivatives are obtained in the usual way, multiplying Fourier coef- 
ficients by mode numbers. The radial derivatives of Fourier coefficients require 
more careful consideration. Straightforward finite difference approximations to the 
radial derivatives of Fourier coefficients f,,,(p) give large relative errors near the 
magnetic axis for large poloidal mode numbers m, of 0( 1) instead of O(dp*). We 
found it necessary to modify the finite difference expressions to avoid this problem. 

The reason for the large relative error in the radial derivative is that second-order 
accurate finite differences are reasonable only when f,,,(p) is locally well 
approximated by a quadratic curve. This is generally not the case in polar-like 
coordinates near the polar origin [14]. Fourier coefficients vary near the magnetic 
axis as a power of p times a power series in p*, 

fm,JP) N PedmYfom,n +fLP* + . . . ), Pe 1, (22) 

where f",,,, fi,,, . . . . are constants and where e,(m) is an integer function that 
depends on the scalar f: For analytic functions &, e&(m) = m. (Analytic functions 
d(p, 0,4) = &‘(<, q, 4) have bounded Taylor series near the magnetic axis when 
expressed in the Cartesian-like variables < = p cos (0) and q = p sin(d).) For metric 
elements and other, more complicated, combinations of analytic functions, e,(m) is 
approximately m for large m. 

Equation (22) suggests that the large relative error in radial derivatives near 
p = 0 can be reduced by introducing radial factors R(f),(p) whose derivative can 
be taken analytically, and such that f,,,(p)/R(f ),(p) is more locally quadratic. 
One reasonable choice is 

R(f),(p)=pmin(e/(m).~). (23) 

The radial factor depends on both the mode number and the particular functionf: 
The integer fi, which satisfies 16 fi 6 m, prevents R(f),(p) from becoming too 
small for large m and small p. This cutoff is necessary when solving Ampere’s law, 
whose discretized form can become ill-conditioned near the magnetic axis if large 
radial powers are allowed. In practice, 51= 2 gives satisfactory results, balancing the 
need to obtain increased accuracy near the magnetic axis with the need to avoid ill- 
conditioning with tiny numbers. 

We then define the radial derivative at the mesh value pr = I dp to be 

(24) 

Here 6, represents the appropriate second-order accurate finite-difference operator. 
On the integer mesh, it takes the form 
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with a similar expression for the derivative on the half-integer mesh in terms of the 
values on the integer mesh. 

The second-order accurate two-point discretization next to the magnetic axis 
(l= 1) is motivated by Eq. (22), which shows that the normalized Fourier coef- 
ficient fm,JR(jJm has no term linear in p for p 4 1. This is correct when 
ef(m) - min(Kr, e,(m)) is even, so that the expansion Eq. (22) is valid. When this 
difference is odd, a discretization based on an expansion of the form 
fL,np +f;fr,,p3 + ... is required. A one-sided derivative at p = 1 is used since we 
assume that values of fields are not known exterior to the domain D. 

IV. THE NONVARIATIONAL METHOD 

In this section, details are given of the PIES algorithm: how equilibrium 
solutions to the MHD equations can be obtained by iterating in carefully chosen 
coordinates. The description is more complete than that given in our earlier paper 
[S], at a level more appropriate for obtaining a working code. 

We first discuss how the force balance equation, Eq. (1 ), can be reduced to the 
magnetic differential equation, Eq. (4), for the stream function for the current den- 
sity [24, 111. Then we discuss how Ampere’s law can be solved to obtain a field II 
whose curl gives this current [l 11. This field is generally not solenoidal but can be 
made so by adding the gradient of a scalar field u (see Eq. (5)). We next discuss 
how to obtain U, which requires the solution of a Poisson equation with Neumann 
boundary conditions in a nonseparable coordinate system [14]. Finally, we 
disucuss blending and filtering of Fourier coefficients, which are sometimes needed 
to obtain convergence. 

IV.A. Boundary Conditions and Surface Functions 

We want to solve the MHD equations, Eqs. (l)-(3), in the domain defined by 
Eq. (6). The MHD equations have to be supplemented with boundary conditions 
and by two surface functions (or profiles) [21]. A fixed perfectly conducting 
boundary is assumed so that the outermost magnetic surface is known: 

B.Vp=BP=O, for p= 1. (26) 

This boundary condition enters the Poisson equation related to Ampere’s law, and 
implies a Neumann boudary condition (see Secton 1V.D). 

A second boundary condition is also required in solving Ampere’s law to pin 
down the multi-valuedness of the scalar solution to the Poisson equation (this is 
needed since the domain D is not simply connected and a Neumann boundary 
condition does not specify a unique solution). There are two natural boundary 
conditions that can be imposed: conservation of net toroidal flux 

j B . dS, = J4 = ho B . (3” Vb) dp dtl = constant, (27' 
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where the integration goes over a surface of constant toroidal angle 4 = & that 
intersects the domain; or conservation of net external poloidal current (i.e., current 
through the external coils that thread the torus): 

B . (f p Vp x W) dq5 = constant, (28) 

where the integration now goes over the boundary of the interior hole of the 
domain. Equation (27) involves an integration over p, which couples all the radial 
surfaces together. Equation (28) couples only the outermost three radial surfaces 
and leads to a nearly block tridiagonal matrix for the Poisson equation. This is 
more convenient numerically. It is also physically more similar to the conditions of 
many experiments. 

Besides boundary conditions, two surface functions must be specified to obtain a 
unique solution to the MHD equations [21]. It is convenient to specify the 
pressure profile p(p) and a current profile, either the net toroidal current Z(p), or 
the net poloidal current g(p). 

The PIES code therefore begins with an initial magnetic field B, a pressure profile 
p(p), and a current profile (Z(p) or g(p)); see Fig. 1. The contravariant components 
of the magnetic field are first given in the usual pseudo-toroidal laboratory 
coordinate system. The fields x, y, and B” are evaluated along L + 1 field lines as 
functions of +4 by integrating the equations: 

(29) 

where we make the important assumption that B” is nonzero in the toroidal 
domain. The L + 1 starting points for the field lines define a uniformly spaced radial 
mesh along symmetry axis connecting the magnetic axis p = 0 and the boundary 
p = 1. This symmetry axis exists by our assumption of the stellarator symmetry, 
Eq. (7). 

Applying the algorithm of Ref. [22], the fields x, y, and B” become known 
Fourier expansions in near-magnetic coordinates (p, 8,d). The algorithm also yields 
the rotational transform t(p), which is the winding number of the field line in the 
magnetic surface defined by that field line. The Fourier coefficients of all these 
quantities are determined by the line-following algorithm to an absolute accuracy 
ftprec which is an input parameter, typically of order 10e6. The total external 
poloidal current, Eq. (28), is held constant during each iteration. The numerical 
data needed by the code are summarized in Table I, while the physics data are 
summarized in Table II. 

Starting with these expansions in near-magnetic coordinates, we can then 
proceed to the iteration of the MHD equations, Eq. (l)-(3). The equations are 
more simply stated by using another radial variable, $, which arises naturally from 
the canonical form of a magnetic field that has magnetic surfaces [21]: 

(30) 
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TABLE II 

Physics Data Needed as Input to the PIES Code 

Data Definition 

R 
N 

wx, Y, 2) 
wx, Y, z) 
B’(x, Y> z) 

dpidp 
dlidp 
&I& 

Major radius of domain 
Number of periods in stellarator 

x component of initial B field in lab coordinates 
y component of initial B geld in lab coordinates 
z component of initial B field in lab coordinates 

Derivative of pressure profile 
Derivative of net toroidal current profile 
Derivative of net poloidal current profile 

Note. Either I’ or g’ is specified, with the other profile being determined by Eq. (36). The magnetic 
axis and outermost magnetic surface are determined by field line integrations, as described in Ref. [22]. 
The locations of the axis and boundary are the only information retained from B. 

The variable $(p) is a nonnegative montonic function of the radial variable p and 
is easily seen to be 1/2x times the toroidal flux enclosed by a surface labeled by p. 
The rotational transform, t(p), is the surface quantity mentioned previously, giving 
the average rate of poloidal rotation of the field line. 

The radial variable t,G is useful provided the relation I&) is known. This function 
can be determined on existing magnetic surfaces by averaging the ratio of the 
Jacobians between Cartesian and near-magnetic coordinates, with p and + as 
independent radial variables respectively. The p-Jacobian, is known in terms of 
derivatives and convolutions of the cylindrical coordinates x and y: 

aw, y, Z) 
.F= a(p, o, 4) =e,xeo4 

finite aspect ratio, 
(31) 

= 
i 

(x + wY,.Y.e - X,sY.p) 
W,,Y,e-x,e.Y,p) infinite aspect ratio. 

From Eq. (30) we see that the Jacobian between near-magnetic coordinates with tj 
as the independent variable is determined by the B’ component of the magnetic 
field: 

(32) 

= c 8LoN cos(n4 - m. 
m.n 

The Fourier coefficients of l/B”(+, 8,#) are known by having evaluated Bm along 
field lines of B, using the transformation to near-magnetic coordinates of Ref. [22], 
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and solving a set of linear equations for the Fourier coefficients of the inverse 
Fourier series. The averaged ratio of the two Jacobians, then gives 

d$ dp= (4”(l/f*)> = (cYPB4), (33) 

where the brackets ( . . . ) denote an average over poloidal and toroidal angles. 
Thus $‘(p) is the m = n = 0 mode of fPBb. 

1V.B. Calculation of the Current Density J 

From V x B = J, we deduce that the current density J must be solenoidal. From 
J x B =Vp, we see that J must lie on magnetic surfaces [21]. The current density 
can therefore also be represented in a canonical form similar to Eq. (30), 

J=(Z&!+xVS+($-$(i))VdxV+, (34) 

where we are now using $ as the radial variable. The single-valued scalar v($, 8,#) 
is a degree of freedom that is allowed under the constraints V. J = 0 and J .Vtj = 0. 
By integrating J . VC$ over the volume enclosed by a magnetic surface labeled by tj, 
we see that 27rZ(@) is the net toroidal current profile. Similarly, integrating the 
quantity J .VtI over a surface labeled by 8 shows that 2zg($) is the net poloidal 
current profile external to the magnetic surface. 

A magnetic differential equation for v(+, 8, 4) is obtained [24] by substituting 
Eqs. (30) and (34) into the force balance equation, Eq. (1 ), 

or 

(B.V)v,g~+$ 

($ft;)v=gl+lP+$P. (35) 

where the ’ denotes differentiation with respect to I(/. 
By integrating both sides of this equation over 0 and 4 and using the fact that 

v is single-valued and hence periodic, we see that Eq. (35) has a solution only if 

where y$,O is the m = n =0 mode of the Fourier representation of f* (see 
Eq. (32)). This relation allows us to specify either Z’ or g’ and to solve for the other 
current profile. This relation between the two profiles was originally given by 
Kruskal and Kulsrud [21] in the form dp dV= dx dZ-dtj dg, where V is the 
volume enclosed by a magnetic surface labeled by $, and where x = tll/ is the 
poloidal flux enclosed by the same surface. 
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The solution to the equation for v, Eq. (35), in terms of the Fourier coefficients 
of ffi (Eq. (32)), is simply 

where the ’ indicates that the m = n = 0 term is omitted. Substituting this into the 
expression for J, Eq. (34), then gives the canonical expression for the current 
density: 

J=V$xV9 r’($)+$ c’ W* 2 cos(n# - me) 
m,n (n-tm) 

-g’(J’)+d# m,n (n-tm)co~ (ye-4 
dp ct nAL 

(38) 

Together with Eq. (36), this finishes the first step of the PIES algorithm, calculating 
the total current density J in terms of B, the pressure profile p’, a current profile, 
and a known outermost flux surface. 

1V.C. Solution of Amp&e’s Law 
We next discuss how to solve Ampere’s law, Eq. (2), for a new solenoidal 

magnetic field b. As observed by Boozer [ 111, it is simple to find a field h such that 
V x h = J. In fact, if h is not solenoidal, there is an infinity of such fields that all 
differ by the gradient of some scalar. Ampere’s law in covariant form leads to the 
following three equations on each radial surface: 

This suggest two natural gauges. One is to set hO or h, to zero for m > 0. This gives 
the following solution (which generalizes Boozer’s gauge [ 111 to the case of finite 
fP): 

W,hrw Vd,,,, (h,),,,) 

/ 

; (/“Jt,,m 0,4”J%n) 

= ; <PJf,,,,, %“JL,m 0) 

for m>O; 

for m = 0 and n # 0; (42) 
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For fields with magnetic surfaces (Eq. (38)), we can write this out explicitly: 

+ U(P) - 40)) ve + k(P) - g(O)) v4. (43) 
Another choice of gauge is (h,),,, = 0 for all m and n, which gives the following 

solution to Ampere’s law: 

For fields with magnetic surfaces, we can again write this out explicitly: 

For circular magnetic surfaces, this gives hP = 0, so that this gauge is appropriate 
for equilibria with nearly circular magnetic surfaces. 

Although both gauges are analytically equivalent in that both satisfy V x h = J, 
they are different numerically. In particular, Eq. (43) involves only the radial 
integrals of m = n = 0 modes, while Eq. (45) involves radial integrals of higher mode 
numbers. 

Both choices of gauge for h require numerical approximations to integrals of 
Fourier coefficients. Two different numerical approximations were tried. The first 
method was the usual trapezoidal rule. The second method evaluated integrals by 
analytically integrating the interpolating splines of the integrands, using “not-a- 
knot” boundary conditions [25] at p = 0 and at p = 1. Numerical experiments 
showed that the convergence of the PIES code was only weakly dependent on the 
choice of integration algorithm. In particular, the trapezoidal rule gave satisfactory 
results. This is an important observation for applications of the code to equilibria 
with islands, since global integration methods using splines or radial polynomials 
are awkward to use in the presence of islands, for which Fourier coefficients can 
vary rapidly over short radial intervals. 

A potential difficulty with solving directly for h in Ampere’s law is that this field 
remains of 0( 1) as the iterations proceed. This could lead to numerical convergence 
problems since, as we will see in the next section, the p component of the new 
magnetic field has the form 
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and this must vanish on all magnetic surfaces. If h remains of 0( 1 ), then the scalar 
field u also remains of 0( 1) by Eq. (5), and a cancellation of large numbers must 
take place to allow bP to vanish. 

Because this cancellation can possibly magnify numerical errors and slow 
convergence, we explored a modification of the PIES algorithm, in which the B 
field at the beginning of the iteration was subtracted from the right side of Ampere’s 
law, 

Vxh=J-VxB, (46) 

so that h becomes the correction to the magnetic field from the previous iteration. 
The field h and solution u now go to zero as the code converges. 

Appendix A discusses how the magnetic field B can be expressed in terms of its 
own magnetic coordinates, so that V x B in Eq. (46) is a meaningful expression. 
Equations (42) and (44) can then be modified to subtract off this new field. The 
consequence of subtracting V x B is discussed in Section V. 

1V.D. Solving a Poisson Equation for u 

The field h of the previous section is typically not divergence-free, and so does 
not satisfy the last of the MHD equations, Eq. (3). It can be made solenoidal- 
without changing its curl-by adding the gradient of some scalar. A magnetic field 
b whose curl is J is then given by 

b=h+Vu+lV& (47) 

where u is a single-valued scalar field to be determined and where the constant 1 
fixes the possible multivalued correction to u. It is determined by the conservation 
of the total external poloidal current, Eq. (28): 

I B’.dl=j (h + Vu + I V4) . dl. 
p=1,e=eo p= i,e=eo 

The integrals go over a closed loop on the outermost magnetic surface and are 
independent of e. provided there is no net poloidal current on the outermost 
magnetic surface. Since u is single-valued, the line integral over a closed loop of its 
gradient is zero. The left side is known from the initial field B” and h is known from 
Eq. (43) or from Eq. (45). We then find 

(48) 

which involves the m = n = 0 Fourier components of BO, and of h, at p = 1 (1= L). 
The requirement that Eq. (47) satisfies Eq. (3) leads to a Poisson equation for u: 

V2u= -V.(h+LVd). (49) 

The boundary condition is determined by our assumption of a fixed perfectly 
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conducting boundary, bP = 0 for p = 1, Eq. (26). This leads to a Neumann condition 
on u: 

Vp.Vu= -(h+IV4).Vp for p= 1. (50) 

Equations (49) and (50) have to be solved numerically for the Fourier coefficients 
of u on each magnetic surface. A solution always exists since the usual integral 
condition for the existence of a solution u of a Poisson equation with a Neumann 
boundary condition [26] is trivially satisfied: the volume integral of the right side 
of Eq. (49) is equal to the surface integral of the right side of Eq. (50). 

The term Vd on the right side of Eq. (49) is retained for the following reason. 
Although 4 is harmonic, so that V. V@ = V *b = 0, the discrete operator approximat- 
ing the Laplacian does not generally kill 4. We found that retaining the Vd term 
on the right side increased the numerical stability of the PIES code. The reason is 
that a similar gradient term appears in Eq. (50), so that the right side of the discrete 
equations in the interior of the domain is more consistent with the right side of the 
boundary condition. 

The details of how Eqs. (49) and (50) are discretized and solved are given in 
Ref. [14]. As is pointed out in that paper, the main subtlety is choosing a dis- 
cretization that is numerically stable when used in the larger context of the PIES 
algorithm. By using a conservative discretization of the Laplacian, rapidly growing 
instabilities near the outermost magnetic surface can be eliminated. The tradi- 
tionally difficult region near the magnetic axis can be controlled by using leading 
radial factors when performing derivatives or averages, along the lines discussed in 
Section 1II.B. A weak slowly growing radial instability sometimes remains but can 
be eliminated by blending or filtering of Fourier coefficients, as discussed in the next 
section. 

IV.E. Blending and Filtering of Fields 

This completes one cycle of iterating through the MHD equations. In general, 
many cycles are needed, the exact number depending on the choice of initial condi- 
tions, the numerical resolution, the desired accuracy, and the values of physical 
parameters. Since the PIES algorithm is a Picard iteration scheme, in which the 
new fields are fed back as input to the next cycle of iteration, ‘convergence can be 
slow or even unstable without some massaging of the fields before entering the next 
iteration. We have found it sometimes useful to blend the Fourier coelIicients at the 
end of one iteration with those of the previous iteration (which aids convergence by 
preventing oscillation or overshooting). It is also sometimes useful to filter certain 
Fourier coefficients radially. This eliminates a weak instability of high frequency 
noise that can appear after many iterations. 

Since the coordinates and the representations of fields are changing at each 
iteration with B, it is important to choose lields for blending that are invariant 
under coordinate transformations. One good set of fields for blending is 

B”(P, 0, d), X(P, &4)9 and t(P)- (51) 
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This is roughly equivalent to blending the magnetic field since B is known in terms 
of these quantities, 

This is the expression for B in covariant basis vectors (Eq. (30)), using the fact that 
l/f” = B” by Eq. (32), and using Eqs. (13k( 18) to express X in terms of x and y. 

We introduce three different blending coefficients for these fields: bblnd, xyblnd, 
and iblnd, and blend the Fourier coefficients at the latest iteration (K+ 1) with 
those of the previous one (K), using a simple relaxation scheme: 

B”(K+ l)+ B’(K+ l)+bblnd(Bd(K)-B”(K+ l)), (52) 

x(K+ 1) +- x(K+ 1) + xyblnd(x(K) - x(K+ I)), (53) 

t(K+ 1) + t(K+ 1) + iblnd(t(K) - t(K+ 1)). (54) 

It is understood that the blending is applied to each separate Fourier coefficient. 
More sophisticated blending algorithms could also be used that give faster 
convergence by using information from earlier iterations [27]. 

In addition to blending, we also implemented a subroutine for radial filtering of 
the Fourier coefficients of certain fields such as X and B. A simple method for 
removing this high frequency noise was given by Shapiro [28]. The idea is to use 
a radial diffusion operator to eliminate the highest frequency noise, and then apply 
an “antidiffusion” operator to restore the amplitudes of the lower frequency radial 
modes. If we define the operator 

(55) 

then F, is diffusive for real numbers s > 0 and antidiffusive for s < 0. Following 
Shapiro, we use a two-piece filter on each Fourier coefficient: 

(56) 

It was shown by Shapiro that the values sl = i and s2 = - i are optimal choices for 
these parameters in that the highest frequency mode is removed with minimal 
amplitude or phase change of smaller frequency radial modes, and that no other 
linear filter acting on five neighboring points can do as well [28]. Our experience 
is that weak damping usually suffkes, with the antidiffusing only slightly improving 
convergence. 

Equation (56) has to be modified near p = 0 and p = 1 so that the filtering is 
consistent with known boundary conditions on the Fourier coefficients. These 
boundary conditions are that the correct analytic behavior be recovered by the 
filtered coefficients and that information on the outermost magnetic surface is 
assumed to be more accurate than interior information. 
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Two modifications are necessary. First, instead of filtering the Fourier coefficients 
directly, we pull out a leading radial power with one less that the full power for 
m > 0 so that the “normalized” coefficient vanishes at the magnetic axis. We then 
filter the “normalized” Fourier coefficient and then restore the radial factor. This 
helps to preserve the correct leading radial behavior near p = 0, which would be 
otherwise lost if the filtering were directly applied. Second, we modify the weighting 
of neighboring terms in the filter, Eq. (56), so that the highest frequency modes at 
p = dp and at p = 1 - dp are killed in one application of the tilter. It should be 
further noted that care must be used when filtering divergence-free fields such as B, 
since the filtered fields are not necessarily divergence-free. 

The filter requires as input to the PIES code three parameters: fltrcnt, which 
determines how many times the filter Eq. (56) is applied in succession to each 
Fourier coefficient during a given iteration; $1, which determines the amount of 
radial diffusion, and $2 which determines the amount of radial antidiffusion. Default 
values used are fltrcnt = 1, sl = l/2, and s2 = - l/2. 

V. RESULTS 

In this section we discuss the results of numerical experiments in which we apply 
the PIES code to two representative MHD equilibrium problems: an axisymmetric 
tokamak equilibrium (the analytic Solov’ev solution [29]) and a nonaxisymmetric 
finite /l stellarator equilibrium first studied by Chodura and Schhiter [6]. In each 
case, we study how the convergence of the code depends on the numerical 
parameters of Table I, and on the physical data of Table II. We emphasize that 
since the PIES code has a high-dimensional numerical parameter space, it is 
difficult to characterize its properties with a moderate number of runs. 

The convergence rate is measured by calculating the magnitude of the residual of 
the MHD equilibrium equations, Eqs. (l)--(3), at the end of each iteration. If we 
define the maximum norm of a Fourier series to be 

(57) 

then the residual is the maximum norm of the force balance expression, J x B - Vp, 
normalized to the maximum pressure gradient (the latter is set to one for force-free 
equilibria): 

~~idua’= ,,p’(p),, L max{ l\f”(Je@ - J”Be) - p’(p)ll, 

I(JqPBP - PB”)(I, IJ,y(JW- .Plq(l>. (58) 
Because the current density J(K) at the Kth iteration is determined from B(K) by 
force balance, the new magnetic field B(K+ 1) from Eq. (47) must be used in this 
expression for the residual to give useful information. 
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Numerical experiments similar to those described below showed that the con- 
vergence of the PIES code was consistent with various assumed approximations. 
Thus fixing all parameters and varying L showed that the code converges quadrati- 
cally as l/L2 at each iteration; this is consistent with the second-order radial 
discretizations discussed in Section 1II.B. Similarly fixing all parameters and varying 
either JZ or JY gave approximately exponential convergence of the residual, again 
consistent with the assumed expansion of smooth functions as Fourier series. This 
is discussed in detail further below. 

These convergence rates do not indicate how the computational effort of the 
PIES code scales with numerical parameters, which we briefly summarize here. The 
most expensive parts of the code are evaluation of the Fourier sums, Eqs. (8)-(9), 
when interpolating the magnetic field at general points in the domain (this is 
required when integrating the field line equations, Eq. (29)), and solving the 
Poisson equation, Eq. (5). 

Interpolation of B involves an effort a (L + 1 )(&! + 1)(2X + 1 ), since a Fourier 
series similar to Eq. (8) must be evaluated for each of the L + 1 field lines. Solving 
the Poisson equation [ 143 requires solution of a (L + 1) x (L + 1) block tridiagonal 
matrix with blocks of size (JZ + 1)(2X + 1) x (M + 1)(2X + 1) so the effort is 
a(L + l)(.& + 1)3 (2J + 1)3 if Gaussian elimination is used for the blocks. 
Although the effort for the Poisson solver grows rapidly with increasing angular 
resolution, in all the examples studied the large number of magnetic field interpola- 
tions dominated each iteration. 

A feeling for the efficiency of the PIES code is given by considering the 5 period, 
aspect ratio 10, 1= 2 stellarator equilibrium considered below. For A = 6, M = 3, 
and L = 20 there are about 50 Fourier modes and 20 radial grid surfaces. Four 
iterations were required to converge to a residual smaller than 10p3, and these four 
iterations took about 2.5 min on a Cray 1. Over a large range in L, J&‘, and Jf, the 
CPU time is simply proportional to these parameters since the field interpolation 
dominates. Thus twice as many radial grids or twice as many poloidal modes would 
require roughly twice as much CPU time. 

Overall convergence of the code is determined by the crucial parameter ftprec, 
which effectively determines how many times magnetic field lines must be followed 
to obtain accurate Fourier coefficients in near-magnetic coordinates [22]. For- 
tunately, the computational effort grows only logarithmically with ftprec, since the 
Fourier coefficients are decreasing exponentially in magnitude with increasing & 
and Jlr. 

V.A. Axisymmetric Tokamak Equilibrium 
A test that is commonly used to verify equilibrium codes is the Solov’ev analytic 

tokamak equilibrium [29]. An axisymmetric field can be written in the form 

(59) 

where g($,) is the poloidal current and +, is the poloidal flux enclosed by a given 
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magnetic surface. This satisfies the MHD equations, Eqs. (l)-(3), provided tip 
satisfies the Grad-Shafranov equation [30]. In cylindrical coordinates (r, z, #), an 
analytic solution is given by 

with 

*(’ + ‘*) lclo = constant @(II/)= R4 9 

(60) 

(61) 

g = go = constant, (62) 

where R is the major radius of the torus and go, tie, and a are arbitrary parameters. 
These parameters can be chosen as follows. If we normalize B . Vd = 1, the 

parameter go should be of order R* so we set go = R*. (The major radius R is set 
to 10.) The parameter a determines the shape of the magnetic surfaces and we 
choose a value a = 1 that gives nearly circular surfaces. The parameter Ii/o deter- 
mines the rotational transform near the magnetic axis. We have set I,+~ =0.14 to 
obtain an axis transform of about 0.14. The poloidal resolution is fixed at J? = 10. 
This is effectively infinite poloidal resolution, since increasing A does not change 
the results. The convergence properties of the code are then studied as functions of 
the radial resolution L and of the Fourier coefficient precision ftprec. 

We first test the PIES code by starting the code with the exact analytic solution, 
Eqs. (59) and (60), and with the profiles in Eqs. (61) and (62). The residual after 
one iteration then measures how accurately the code can approximate the analytic 
answer for given radial and angular resolution and also determines the overall con- 
vergence rate of the code (i.e., the constant coefficient of the error term arising from 
the finite radial discretization). We see from Fig. 3 that the code achieves quadratic 
convergence, i.e., that residual al/L* for sufficiently large L, with a constant of 
proportionality of about 0.1. This is a strong check that various finite difference 
approximations were consistently implemented. The figure also demonstrates that 
the code is indeed solving the MHD equilibrium equations, i.e., as the resolution 
increases, the initial exact solution is a fixed point of the discrete equations to better 
and better accuracy. 

We next test the PIES code by perturbing the Solov’ev equilibrium and studying 
the convergence back towards the equilibrium solution. We add a perturbation of 
the form 

EP COS(WPi - P2) *l={o for P<P~ 
for p>,po, 

(63) 

to Eq. (60), where the parameters E and p. determine the magnitude of the outward 
shift of the magnetic axis and the radial limit of the perturbation, respectively. 
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Radial Resolution L 

FIG. 3. Residual versus radial resolution L on a log-log plot. The residual is calculated after one 
iteration of the PIES code, starting with the analytic equilibrium, Eq. (60). The straight line was 
obtained by a least squares fit, giving an approximate quadratic dependence residual = 0.1 L-1.9. 

We have chosen values E = 0.3 and p0 = 0.75. We start the code with the perturbed 
B field and with the same profiles as before and iterate until no further changes 
occur or until the code diverges (the residual starts increasing). Figure 4 shows the 
(p, 13) grid for the perturbed initial state (a) and the final equilibrium state (b). 

A more quantitative understanding of the convergence properties of the code is 
obtained by systematically varying numerical parameters that affect convergence, 
the most important of which relate to blending and filtering (see Section 1V.E). In 
Fig. 5, we show how the residual varies with iteration number K for fixed angular 
and radial resolutions and with different combinations of fields being blended (see 
Eq. (51)). Figure 5a has no filtering of Fourier coefficients (sl = s2 = 0), while for 
Fig. 5b, sl = 4 and s2 = - $. 

We see from Figs. 5a and b that convergence is slow or not attainable unless the 
rotational transform t(p) is blended. In the absence of filtering (Fig. 5a), blending 
t alone is not sufficient for convergence. The code stops after two iterations because 
of numerical noise near the magnetic axis. We also learn from this figure that filter- 
ing has only a moderate affect on convergence, stabilizing the case where only t is 
blended (-i-) and destabilizing the case where no fields are blended (---), and 
otherwise not affecting the convergence rate. Filtering has affected the attainable 
residual, presumably because the strong filtering used here has decreased the effec- 
tive radial resolution. (The effect of radial resolution on the converged residual will 
be further discussed below.) Other combinations of blending were also tried (e.g., 
b-, b-x, bi-, and -ix) and were found to give results similar to the curves in Fig. 5, 
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FIG. 4. (p, 0) grid for the 0th (Part a) and 16th (Part b) iterations of the perturbed Solov’ev equi- 
librium, Eq. (63). There is a Shafranov shift of about 10%. The final state, (b), closely approximates the 
analytic Solov’ev solution. 

i.e., they confirmed the importance of always blending at least the rotational 
transform. 

The peculiar importance of blending t(p) can be understood by a more careful 
examination of output from the code. It is found that when the rotational transform 
t is not blended, the transform is oscillating while the residual remains roughly con- 
stant (blending of t would then be expected to damp the oscillations). The origin 
of the oscillations in t is not hard to determine. The change 6t(K) = t(K) - t(K- 1) 
in transform from one iteration to the next can be seen to satisfy 
St(K+ 1) oc C/&(K), with the constant of proportionality C ‘Y 1. Thus increases in 
6t in one iteration lead to decrease in the next, and oscillation tends to result. The 
derivation holds for equilibria with net toroidal current and so oscillations are 
predicted not to occur for stellarator equilibria with zero net toroidal current, as is 
confirmed by our calculations below. 
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(a) 

Iteration K 

FIG. 5. Residuals (Eqs. (58)) versus iteration number K for the perturbed Solov’ev equilibrium, for 
.M = 10, .N = 0, L = 20, and ftprec = lo-‘. In (a), no filtering is used (sl = s2 = 0), while in (b), sl = f 
and s2 = - i. Residuals are given when no fields are blended (---), when the rotational transform only 
is blended (-i-), when the coordinate x is blended (--x), and when all three fields are blended (bix). The 
blending parameter is i in all cases. Curves that stop before the 17th iteration diverged because of 
numerical instabilities. 

The effects of the radial resolution L and the finite Fourier precision ftprec are 
more carefully examined in Fig. 6, where the value of the residual achieved after 20 
iterations is plotted as a function of radial resolution L for several different values 
of ftprec. For large values of ftprec, the residual is independent of L (for the range 
of L studied here) since the discretization error, of order 1/L2, is much smaller than 
ftprec. As ftprec gets significantly smaller than the radial discretization error, one 
sees quadratic convergence in the residual, until the latter is again of order ftprec. 
The quadratic error term has approximately the same coefficient (0.1) as that 
observed in Fig. 3. 

The changes in the radial component of the magnetic field in the Solov’ev equi- 
librium is given in Fig. 7. The quantity BP/B” measures the deviation of p from the 
magnetic surfaces. In the 0th iteration, BP deviates from zero because of the pertur- 
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FIG. 6. Plot of residual versus radial resolution L for a fixed iteration number of twenty iterations, 
and for several different values of the Fourier precision parameter ftprec. The latter is seen to provide 
a cutoff to the residual, which cannot get smaller than about this amount. For the smallest values of 
ftprec, the residual is converging quadratically with approximately the same constant and exponent as 
given in Fig. 3, until the cutoff of ftprec is reached. 

bation. Upon convergence, self-consistency has been attained to much better than 
the parameter ftprec = 10e5. The random structure of the Fourier modes in Fig. 7b 
indicates that convergence has been attained to within the available number of 
significant digits (ftprec), so that only numerical noise remains. 

For tokamak equilibria, we conclude that some blending (but not filtering) of 
fields is needed to obtain convergence, and that convergence is quadratic for 
sufliciently small ftprec. The code is unstable without blending. 

V.B. Nonaxisymmetric Stellarator Equilibrium 

The second example that we systematically studied was a more challenging non- 
axisymmetric stellarator equilibrium. In the absence of axisymmetry, one expects 
resonances and island formation on rational magnetic surfaces. In practice, one can 
choose physical parameters (corresponding to a small value of the rotational trans- 
form) so that, with low to moderate numerical resolution, resonances do not occur. 
As the angular resolution increases (&Z + co, Jf + co), resonant denominators will 
appear and one must treat the magnetic islands and stochastic regions directly as 
discussed in Ref. [8,22]. 

We chose a 5 period (N = 5), I= 2, aspect ratio = 10 stellarator, corresponding to 
the parameters of the WVIIA stellarator. As is appropriate for stellarators, we 

581/81/l-9 
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FIG. 7. Initial (a) and final (b) plots of the Fourier coefficients of BP/B4 versus p for the perturbed 
Solov’ev equilibrium. 

imposed zero net toroidal current on each magnetic surface (I’ = 0). We assumed a 
pressure profile of the form p = pO( 1 - p2)’ and a value of p0 = 5.4 x 10h3, to give 
a Shafranov shift of about 20% of the minor radius. A Bessel function solution for 
the vacuum field in a cylinder was used as an initial guess for the field, B” = Vx with 

where Z,(p) is a modified Bessel function. Taking b2/bo = 0.667 gives a relatively low 
rotational transform of about t= 0.14 at the magnetic axis and also yields a 
relatively low shear. This avoids resonances for moderate angular resolutions. 

The convergence properties of the stellarator equilibrium as a function of L and 
ftprec were found to be very similar to those for the Solov’ev equilibrium described 
in the previous section, with quadratic convergence being achieved with increasing 
L. Memory restrictions on the CRAY-XMP prevented extensive tests of con- 
vergence with respect to poloidal and toroidal mode numbers, but various runs 
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indicated an exponential decrease in residual with increasing poloidal number .M, 
as expected for spectral representations of smooth functions. For L = 24, A% = 6, 
and Jf = 3, a smallest residual of 8.2 x 10e4 was obtained, while doubling the 
resolution to Jt = 12 and JV = 6 with L fixed gave a smallest residual of 6.4 x 10P5. 
The factor of 13 improvement is consistent with spectral (exponential) convergence. 

For the rest of this section, we fix L = 20 and ftprec = 10m5. We also take JZ = 6 
and ,Y = 3. Figure 8 shows the (p, 0) grid for the initial and converged magnetic 
field. A Shafranov shift of about 20% is apparent in the converged field. Both the 
axis shift and the shape of the magnetic surfaces are in reasonable agreement with 
the previous calculation of Chodura and Schliiter [6]. 

When the above initial conditions were used without blending or filtering, the 
residual and corrections were found to decrease and then increase with successive 
iterations, indicating some numerical instability of the algorithm. Figure 9 is similar 

1.0 1 

IlAb” 0 

ON 
Iteration 16 

-1.0 c 

-1.0 0.0 1.0 

FIG. 8. The (p, 0) grid in the 4 =0 plane for the initial (a) and final (b) states of the 5 period 
stellarator field with 1=2, aspect ratio = 10, and /I = 5.4 x lo-‘. Numerical parameters are L= 20, 
.M = 6, Jy = 3, ftprec = lo-‘. The figure is in good agreement with an earlier calculation of Chodura and 
Schliiter [6]. 
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FIG. 9. Residual versus iteration number K for the low-shear stellarator equilibrium. In (a), no 
filtering is used (sl = s2 = 0), while in (b), sl = 4 and s2 = - 4. The blending parameter is i in all cases. 

to Fig. 5 in showing how convergence depends on filtering and blending, with (a) 
giving the results without filtering and (b) with filtering. The results contrast 
sharply with the tokamak runs: convergence is not attained for any combination of 
blending unless filtering is used (the default parameters of sl = i and ~2 = - i were 
chosen for part (b)). Even when filtering of Fourier coefficients is turned on, not all 
combinations of fields being blended result in convergence. The runs that do 
converge seem stable out to the largest iteration numbers studied (about 30). The 
smallest residual attained for convergent runs again depends on the parameter 
ftprec, approaching but never becoming smaller than this value. 

Because of the importance of filtering in stellarator runs, we studied more 
systematically the sensitivity of convergence to the filtering parameters sl and s2 in 
Fig. 10. The main conclusion of this figure is the need for some minimal radial 
smoothing. It is not necessary to entirely remove the highest frequency component 
(~1 = $). When complete filtering of the highest frequency component (sl = 4) 
is employed, a subsequent antidiffusion improves the accuracy of the solution 
somewhat by restoring the amplitudes of the lower frequency modes. 
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Iteration K 

FIG. 10 Residual versus iteration number K for the low-shear stellarator equilibrium, for no blending 
and different choices of filtering parameters s, and s2 (see Eqs. (55) and (56)). The curves are labeled by 
ordered pairs (31, -s2). 

With insufficient filtering, the code stops because of numerical noise appearing in 
Fourier coefficients near the magnetic axis. This prevents the algorithm used for 
transforming to near-magnetic coordinates from finding a magnetic axis [22]. 
Some insight into this instability is given by Fig. 11, which shows the radial 
dependence of the Fourier coefficients of BP/B4 at the end of several iterations. The 
Fourier coefficients are smooth and well behaved until about the fifth iteration, at 
which point kinks with magnitude above ftprec appear near the magnetic axis 
(p ~0.3). These kinks continue to grow in magnitude and remain localized in the 
vicinity of the magnetic axis. Eventually, they exceed all other modes in magnitude 
and the code fails because it cannot find a magnetic axis. 

Numerical experiments showed that this instability is a subtle one, with its 
growth rate depending sensitively on the discretization used in the Poisson solver, 
and not being sensitive at all to numerical details of integrations along field lines 
and the transformation to near-magnetic coordinates. This situation is similar to 
some experiences with 3-dimensional variational codes in flux coordinates, for 
which subtle discretizations were also needed to obtain numerically stable codes 
Cl51. 

Some examples of runs we made to explore this instability are given in Fig. 12. 
It might be expected that subtracting off V x B from Ampere’s law and solving for 
the correction to the new magnetic field, rather than for the field itself, would 
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FIG. 11. Fourier coefficients of BP/I? as functions of p during successive iterations of the PIES code 
in the absence of radial filtering. A slowly growing instability near the magnetic axis eventually 
dominates the Fourier modes, preventing convergence. 

improve convergences (see Eq. (46)). In particular, this reduces the large numerical 
cancellation among the terms that make up BP, which is tending to zero during 
convergence. The figure shows that this modification had little effect on the initial 
convergence rate of the code and was actually destabilizing for long runs. 

Figure 12 also shows that switching from the generalized Boozer gauge, Eq. (42), 
to another gauge, Eq. (45), had little influence on the instability, even though these 
gauges represent different numerical approximations. In this case, the convergence 
rate for the two gauges was nearly the same, with the final residual being slightly 
smaller for the Boozer gauge. We have found that the gauge of Eq. (45) can be con- 
siderably more accurate than the Boozer gauge for axisymmetric equilibria with 
nearly circular flux surfaces. 

The above results may be summarized by stating that-for stellarator equilibria 
with magnetic surfaces and with zero net toroidal current-the nonvariational 
algorithm is numerically unstable unless some filtering and blending of Fourier 
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FIG. 12. Residual versus iteration number K for difTerent choices of the flags m&If and bzrggf. The 
former flag if true subtracts off V x B when solving Amp&e’s law as in Eq. (46); if false, no subtraction 
is performed. Similarly, if bzrggf is true, the expression Eq. (43) is used to evaluate b in terms of J, 
otherwise Eq. (45) is used. 

coefficients is used. Filtering and blending suffices to stabilize the algorithm 
and to obtain convergence of O(ftprec), the precision of Fourier coefficients after 
transformation to near-magnetic coordinates. 

VI. CONCLUSIONS 

In this paper, we have discussed in detail a new 3D MHD equilibrium code and 
have shown it to converge rapidly and efficiently for representative tokamak and 
stellarator equilibria that have magnetic surfaces. The convergence properties of the 
code were studied for various physical and numerical parameters; only a small 
portion of the high-dimensional parameter space could be studied. 

The importance of the code lies in its use of a nonvariational algorithm and in 
the formulation of the MHD equilibrium equations in terms of a magnetic differen- 
tial equation (Eq. (35) above). Both elements make this approach more suitable for 
calculating MHD equilibria that lack magnetic surfaces [ 121. This approach is also 
of in&rest in its own right for equilibria with surfaces since so few alternatives to 
variational algorithms have been explored for 3-dimensional plasmas. 

One important conclusion obtained from our numerical experiments on repre- 
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sentative toroidal equilibria is that the PIES algorithm converges. Although the 
basic algorithm was already considered in the 1950’s, our numerical results are the 
first to show that this algorithm is generally convergent in three dimensions. 

A second conclusion is that the PIES algorithm converges rather rapidly. Typi- 
cally of order ten iterations leads to an equilibrium that has the smallest possible 
residual that is consistent with the parameters ftprec, J?%‘, J”, and L. This is several 
orders of magnitude fewer iterations than are typically required for variational 
codes, in which many (but computationally less demanding) steps are taken at each 
iteration towards an extremum of the variational functional. The rapid convergence 
shows that there are no vestiges of any fast time scale behavior in the algorithm. 

Each iteration is relatively efficient. Although only a modest effort was made to 
vectorize the PIES code for running on a CRAY supercomputer and the most 
efficient algorithms possible were not used, the code is already competitive with 
other 3-dimensional equilibrium codes in that only a few CRAY-XMP minutes are 
need to attain a stellarator equilibrium to four significant digits. For many pur- 
poses, this is an acceptable time although further improvements in speed would be 
useful. The scaling properties of the different parts of the code are well understood 
and can be used to estimate the CPU time of a run with given radial and angular 
resolutions. 

Further improvements could be made by using a more efficient algorithm for 
constructing near-magnetic coordinates, by using a more carefully vectorized code 
for solving block tridiagonal matrices, and by using optimized coordinates [23] to 
reduce the size of the matrix associated with solving Ampere’s law. The code also 
lends iftself to parallel computer architectures since the time consuming part of 
the code, following L + 1 field lines to transform quantities to near-magnetic 
coordinates, can be done in parallel and independently on each magnetic surface. 

A third conclusion is that the PIES algorithm, although convergent, sometimes 
requires application of blending or of a radial filter to remove high frequency modes 
(a form of radial dealiasing). In the absence of 
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of nonvariational algorithms and their applications to 3-dimensional MHD 
equilibria. 

APPENDIX A: THE OLD b FIELD IN THE NEW MAGNETIC COORDINATES 

In generalizing the code to handle magnetic islands with net toroidal current or 
to use magnetic fields from previous iterations to improve convergence (see 
Eq. (46)) it is useful to express the Fourier coefficients of a magnetic field in terms 
of the magnetic coordinates defined by its field lines. This can be done as follows. 

At the end of one iteration, the new magnetic field, Eq. (47), 

is known in terms of the magnetic coordinates (p, &c$) of the field from the 
previous iteration, B. The field lines of b define a new magnetic coordinate system, 
(p, 8, 4) and we would like to obtain the Fourier expansion of the quantities 

b . ee = W, 8, d), (A21 

in these new magnetic coordinates. 
The first step is to transform Eq. (Al) to cylindrical coordinates x and y: 

b’yp,8,b)=b.Vx=b.( x,p VP + x,, ve +x,, V4) 

= bPx,, + b%e + b+‘x,, 

bY(p, 4 4) = bPy,, + b”y,o + b’~,,. 

We then evaluate 6” and by along field lines of b, applying the algorithm of 
Ref. [22]. This is done in parallel with the usual scalar fields (x, y, and bm), so 
that the overhead is small and vectorization is achieved. This gives the Fourier 
expansion of b” and by in the new magnetic coordinates, (j& g,d). 

Next, we form the covariant components of b in the new magnetic coordinates 
by appropriate dot products: 

b,(p,8,~)=b.x,,=b.(x,,ri+ y,,f)=bXx,p+bYy,p 

&dA 64) = bXx,o + b9.e. 

b,(i% td) = 
b”x,& + bYy,+ + (R + x)*b+ finite aspect ratio, 
b”x,, + byy,, + R*b” infinite aspect ratio. 

Using VCP = @/(R + x). Since b4 is also evaluated along field lines, all quantities on 
the right side are known Fourier series in the latest magnetic coordinates, (p, 8,4). 
This gives the required expressions, Eq. (A2). 
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